Modeling bivariate long‐range dependence with general phase
نویسندگان
چکیده
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
A new bivariate exponential distribution for modeling moderately negative dependence
This paper introduces a new bivariate exponential distribution, called the Bivariate Affine-Linear Exponential distribution, to model moderately negative dependent data. The construction and characteristics of the proposed bivariate distribution are presented along with estimation procedures for the model parameters based on maximum likelihood and objective Bayesian analysis. We derive Jeffreys...
متن کاملTrain Scheduling Problem - Phase I: A General Simulation Modeling Framework
One of the important problems in management of railway systems is train scheduling problem. This is the problem of determining a timetable for a set of trains that do not violate infrastructure capacities and satisfies some operational constraints. In this study, a feasible timetable generator framework for stochastic simulation modeling is developed. The objective is to obtain a feasible tr...
متن کاملExploratory Data Analysis with Bivariate Dependence Functions
Dependence functions are used to construct joint distributions with fixed marginals. They can shed light on relationships among associated random variables. Many dependence functions have been proposed and standardized. However, there has not been an attempt to understand why certain dependence functions are used and what makes certain dependence functions better than others in solving practica...
متن کاملModeling with Bivariate Geometric Distributions
We study systems with several components which are subject to different types of failures. Examples of such systems include twin engines of an airplane or the paired organs in a human body. We find that such a system, using conditional arguments, can be characterized as multivariate geometric distributions. We prove that the characterizations of the geometric model can be achieved using conditi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Time Series Analysis
سال: 2019
ISSN: 0143-9782,1467-9892
DOI: 10.1111/jtsa.12504